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Multisolitons, or the discrete eigenfunctions of the recursion 
operator of non-linear evolution equations: 11. Background 

Benno Fuchssteiner and Raju N Aiyert 
University of Paderborn, D 4790 Paderborn, West Germany 

Received 19 February 1986 

Abstract. Different definitions of the notion of multisoliton are investigated. I t  is demon- 
strated that, even in more complicated cases (like the CDGSK equation), multisolitons can 
be completely characterised in terms of the discrete spectrum of the strong symmetry and 
that degeneracy of this spectrum leads to resonance solitons (yielding singular solitons in 
case of the K d V  equation and non-singular ones in other cases). Furthermore a method is 
described which allows us to compute strong symmetries out of auto-Backlund transforma- 
tions for non-linear systems. 

1. Introduction 

In [ 11 we explicitly computed the general solution of the CDGSK (Caudrey-Dodd- 
Gibbon-Sawada-Kotera) equation [ 2 ,  31 obtained by iterating the auto-Backlund 
transformation once [3, 41. The explicit computation has shown that this general 
soliton solution does correspond to spectral decomposition of the recursion operator 
of the CDGSK, as was stated in [ 5 ] .  But apart from this expected behaviour these 
multisolitons had some novel features with respect to their time evolutions. As a 
consequence this led to an unexpected form of the corresponding linear dependence 
of infinitesimal generators of one-parameter symmetry groups determined by these 
multisoliton solutions. For the popular completely integrable systems, the correspond- 
ing solution is characterised by a linear dependence between the generators of x and 
time translation, which is not the case for the CDGSK. Another surprising consequence 
was that, with respect to time evolution, even the one-soliton behaved differently from 
what was expected. To be precise: apart from what usually [6] is considered to be a 
one-soliton we found a class of solutions of the corresponding equation (kernel 
equations (26)) being equal to a one-soliton only for a special choice of the integrating 
parameters but leading nevertheless, as in the case of one-solitons, to a discrete 
one-point spectrum of the recursion operator. 

In order to clear up the confusion which may come out of these surprising 
discoveries, in this paper we study different notions of ‘multisoliton solutions’ and 
compare these with the spectral properties of the recursion operator. One discovery 
resulting out of this comparison is that auto-Backlund transformations in general 
determine isospectral problems for the flow under consideration and that these isospec- 
tral problems are equivalent to those given by the recursion operators. In  this context 
it then turns out that, in the case of the CDGSK, the novel features of the multisolitons 
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are due to spectral degeneracy or due-if one wishes to adopt this viewpoint-to 
non-linear resonance. The fact that the corresponding 'resonance solitons' d o  not 
occur in the well known cases (like Kdv, etc) is mostly due  to the special solution- 
manifold one usually studies for these equations. 

Let us begin with the following. 

Situation 1. On some infinite-dimensional manifold of suitable functions in the real 
variable x we consider an  equation 

U, = K ( u )  u = u ( x ,  r )  (1) 

such that there is a hereditary operator [ 7 ,  81 @(U) generating the vector field K ( u )  
out of the generator of the translation group, i.e. 

K ( u )  = @ ( u ) ~ u , .  ( 2 )  

The property of hereditariness then implies that the vector fields 

K , ( u )  = @ ( u ) " u x  n = 0,1, . . . . 

d o  commute in the Lie algebra of vector fields. Because of K ( U )  = K M  ( U )  we have 
then constructed infinitely many generators of one-parameter symmetry groups for (1). 

Furthermore, we assume that an auto-Backlund relation (ABT) for (1) is given by 

(4) 

(3) 

B (  U, ij, A )  = 0. 

This means that B (  . . . , A )  is a one-parameter family of C" functions on the product 
of the manifold under consideration such that for each A the submanifold determined 
by (4) is invariant under ( l ) ,  i.e. 

B,[K(  U)] + B,[ K (  ij)] = 0 

B , [ K ( u ) ]  = ( d / d ~ I , , ~ ) B ( u  + E K ( u ) ,  Q, A )  

( 5 )  

when B (  U, U, A ) = 0. Here 

(6) 

and B,[K(U)] denote the variational derivatives with respect to u (and U )  in the 
direction of K ( u )  (and K ( i i ) ) .  Equation ( 5 )  is equivalent to &(U, Q, A )  = O  whenever 
u = U( t )  and ij = i j ( t )  are solutions of (1) related for one time to by B (  U( to) ,  ij( to) ,  A )  = 0. 

Later on we show that the operator @(U) can be computed from (4). Since we are 
demonstrating this explicitly for two examples we may as well introduce these two 
examples at this point in order to illustrate situation 1. 

Example 1 .  The following operator is hereditary [7]: 

@(U)= D2+2u+2DuD-'  ( 7 )  

where D denotes the operator of taking the x derivative. The Korteweg-de Vries 
equation is of the form 

U, = @ ( u ) u ,  = u,,,+6uuX. 

An auto-Backlund relation for this equation is well known [ 9 ] :  
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Example 2. The operator 

@ ( u ) = D + D u D - '  

U, = @( u ) u ,  = U,, + 2uu, 

is hereditary [7] and 

yields the Burgers equation, for which an  auto-Backlund relation is easily found (see 

(12) 

[lo]):  

B(u, ii, A )  = exp(-D-'(u - ii)) - cu + A = 0 

where c is some arbitrary constant. 

2. The different conditions for multisoliton solutions 

A decisive role in characterising soliton solutions is played by the linear hull of the 
symmetry generators K , ( u ) ,  n =0,  1,. . . . By K we denote the non-trivial (not all 
coefficients equal to zero) linear combinations of the K , ( u ) ,  n = 0,1,. . . . If L ( u )  = 
Z a,&( U )  is an  element of K then the polynomial P L ( t )  = Z a,(" is called its charac- 
teristic polynomial. Observe that L( U )  = PL(@( u ) ) ~ , .  L is said to be non-degenerate 
if the zeros of its characteristic polynomial have only multiplicity 1. The different 
requirements on U for being a multisoliton solution can be summarised as follows. 

(i) Some L E  K is equal to zero. 
(ii) The generator of the translation group U, can be decomposed into non-zero 

eigenvectors w o ,  w l , .  . . , w N  of @(U) i.e. 

u , = w O + w 1 + . . . + 0 N .  

(iii) Some L E K  can be decomposed into eigenvectors of @(U). 
(iv) Every L E  K can be decomposed into eigenvectors of @(U). 
(v) By iteration of the auto-Backlund transformation U can be obtained from the 

zero function, i.e. there are functions uo= 0, U,, U*, . . . , u N - ,  , uN = U and numbers 
A I ,  A * , .  . . , AN such that 

(vi) U is a n  element of a finite-dimensional submanifold which is invariant with 
respect to all the flows: 

U, = K,( U), 

Since being a multisoliton solution should not change with the time evolution of 
(1) it is important that all the submanifolds determined by definitions (i)-(v) are 
invariant under ( 1 ) .  In other words, whenever the initial condition U( t = 0) fulfils one 
of these conditions, then the solution U( t )  fulfils the same condition for all time t .  For 
conditions (ii)-(iv) the proof of this fact can be found in [7], or better in [8]. In the 
case of ( i )  this follows trivially since the K , ( u )  are symmetry generators. In the case 
of (v) this is a direct consequence of ( 5 )  and in ( v i )  it is explicitly required in the 
definition. 

Lemma 1.  The following implications hold: condition (ii) Gcondi t ion  (iv)*condition 
( i ) econd i t ion  (iii). 
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Before proving this lemma we mention that, in fact, the implication from (iv) to (ii) 
cannot be reversed (example 3)  without adding a non-degeneracy condition (theorem 
1). 

Proof: The implications (iv) + ( i i )  3 (iii) are obvious. 
(iii)+(i). Assume that we have a decomposition 

L = 1 amKm = wo + . . . + W N  

into eigenvectors with correspondig eigenvalues A",  . . . , A N .  Consider the polynomial 

P ( @ ) = ( @ ( U ) - A O ) ( @ ( U ) - A ~ )  . . . (  @ ( u ) - A N ) = E  b,@". 

Obviously P ( @ ) L  = 0. Using @ " K ,  = K, , ,  we obtain 

C a m b n K n + m  = 0. 
m n  

(i)*(iii). Assume L=X a,,&,. We consider polynomials P ( @ )  with P(@)ur = 0. 
There is at least one such polynomial, namely P ( @ )  =I; a,@", so there must be a 
minimal one, say 

P o ( @ ) = ( @ - A o ) ( @ - A I ) .  . . ( @ - A N ) ,  

Consider 

r I ( @ ) = ( @ - A l ) .  . . ( @ - A N ) = C P n @ " ,  

Then 

w =n(@)ux =C P n K n ( U )  

is non-zero because Po(@) was minimal. We have (@--A0)w =0 ,  hence X & K n  is an  
eigenvector of @(U) with eigenvalue A o .  

(ii)+(iv). If U ,  can be decomposed into eigenvectors of @(U) 

U, = 0 0  + w 1 + . . . + W N  

with eigenvalues A o ,  . . . , A N  then 

K , , , ( U ) = @ ~ ( U ) U , = C A ; ~ ~  
Hence condition (iv) holds 

The proof of this simple lemma shows clearly that, under additional conditions 
concerning the multiplicity of characteristic polynomials, we can achieve the 
equivalence of conditions (i)-(iv). 

L = w o + w , +  . . .+  U N  

If some L E K  can be written as sum of @ eigenvectors 

with corresponding eigenvalues A o ,  . . . , A N  then the union of { A o , .  . . , A N }  with the 
zeros of the characteristic polynomial of L are called the zero set of L. This name has 
been chosen because it turns out that the above condition on L is equivalent to condition 
(i) ,  where the zeros of the characteristic polynomial are equal to this zero set. 
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Theorem 1. The following are equivalent. 
(a) There is a non-degenerate L = Z amKm such that L( U )  = 0. 
(b) The generator of the translation group can be decomposed 

u , = w , + w , + .  . . + U N  

into eigenvectors of @(U). 
(c) Some non-degenerate H =I b,K, can be decomposed 

H=oo+wl+  . . .  +u&j 

into a (possibly empty) set of eigenvectors of @( U )  such that the set of the corresponding 
eigenvalues is disjoint from the zeros of the characteristic polynomial of H. 

If one of these conditions is fulfilled then the zero sets of L( U), H (  U )  and U, coincide. 

h o o t  We prove (a) +( c)+ (b)+ (a). 
(a)+(c). Of course, (a) corresponds to a decomposition into an empty set of 

eigenvectors. 
(c)+(b).  Let A o ,  . . . , A N  be the set consisting ofthe different eigenvalues (occurring 

in the definition of If) and the zeros of the characteristic polynomial of H. Then, 
obviously, 

( @ - A , ) ( @ - A l )  . . . (  @ - A N ) u , = O .  

Consider the polynomial P (  5) = (5 - A,)( 5 - A ,) . . . (5 - A N )  and define the polynomials 
IIn(5), n = O , .  . . , N by ((-A, , ) I I , , ( [ )  = P ( 5 ) .  Since all zeros of P ( 5 )  have multiplicity 
1 we know from elementary calculus that 

N 

1 =  c a J L ( 5 )  

a, = ( P ’ ( S ) I C = h , )  . 

n = O  

where the a,, are given by 
- 1  

Hence 

Now, introducing w, = rI,,(@)u, we see from 

(@-A,,)@, = P ( @ ) u ,  = O  

that U,, must be an eigenvector of 0 with eigenvalue A,, and that (15) is the desired 
decomposition. 

(b)+(a).  Let A o , .  . . , A N  be the set of different eigenvalues occurring in the 
decomposition of U,. Then obviously 

( @ - A o ) ( @ - - A l ) .  . . ( @ - A N ) u , = O .  

Thus, if P ( 5 )  = ( 5 - A o ) ( S - A l )  . . . ( , $ - A N )  = X a,(,, we have found some 

L ( u ) = C  anKn(u) 

with L( U )  = 0 such that the zeros of the characteristic polynomial are given by the A. 
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Henceforth, we call a solution U fulfilling any of the equivalent conditions in theorem 
1 a multisoliton, whereas those solutions U fulfilling the more general condition (i) 
(or (iii)) without the non-degeneracy requirement will be called resonance multisolitons. 
Of course, any multisoliton is also a resonance multisoliton, since whenever it fulfils 
a condition with a non-degeneracy requirement, then it also fulfils a condition violating 
the non-degeneracy requirement. For example, when K , (  U )  - Au, = 0 then 

K2( U )  -2AKI( U)+ A'u, = (@ - A ) ( K , (  U )  - A u , )  = O .  

But there may be resonance multisolitons which are not multisolitons in the strict 
sense. Before we give examples for such a situation we would like to clarify the 
interrelation with condition (vi). The connection with condition (v) will be cleared 
up in the next section. 

Remark 1. Condition (vi) implies that U is a resonance multisoliton. In case the K,( U), 
n = 1, 2 , .  . . , are polynomials in derivatives of U, condition (vi) is equivalent to U being 
a resonance multisoliton. 

PrmJ Since the manifold under consideration is invariant with respect to the K,, the 
vector fields K ,  are in the tangent bundle of this manifold. Furthermore, at each point 
U, they must be linearly dependent since the tangent planes are finite dimensional. 
But such a linear dependence is preserved along the orbits of the flows U, = K , ( u )  
since the K , ( u )  are symmetry generators for all these flows. Hence condition (i) must 
hold. On the other hand, if condition (i)  holds and  if the K , ( u )  are of the required 
form, then condition (i)  yields an ordinary differential equation whose solution mani- 
fold is finite dimensional. 

Of course, in condition (vi)  the requirement that the finite-dimensional manifold must 
be invariant against all the flows U, = K , ( u )  is essential. Examples for which the less 
stringent condition of being invariant only against (1) is fulfilled are given by the 
similarity solu ti ons. 

Physicists like to define multisolitons by their asymptotic behaviour with respect 
to large time r .  Of course, this viewpoint is more special than the one we have adopted 
here, but nevertheless it is compatible with ours. For example, start with the one-soliton 
given by the ordinary differential equation (@( U )  - A ) u ,  = K , (  U )  - Au, = 0 which has 
the solution, sA (x),  say. Since U, - A  = 0, then s k ( x  + A M r )  must be the corresponding 
solution of (1). Now, assume that for all A these sA(x) vanish suitably rapidly at 
IxI+cc. Then, if the K , ( u )  are local with respect to x, for example if  all K , ( u )  are 
polynomials in U and its derivatives, then any solution U which decomposes for It1 + cc 
into faraway one-solitons sA,, s h 2 , .  . . , s,, (with distinct A )  must be a solution of 
O=II.=,(@(u)-A,,)u, (because of the local behaviour of the K n ) .  But since this 
condition is preserved with respect to time evolution it must hold for all time t. Hence, 
the conditions of theorem 1 are fulfilled. So, the problem whether or not our condition 
implies asymptotic decomposition into one-solitons is a question whether suitable 
boundary conditions at infinity are fulfilled for the one-soliton. For the Kdv this is the 
case; for the Burgers equation this is not. It seems noteworthy that in case we have 
asymptotic decomposition for large time, then the zero set of the solution is just the 
set of the different asymptotic speeds of the corresponding one-solitons. 

Of course, all these statements d o  not go through for the case of resonance solitons. 

N 
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Example 3. We consider the resonance one-soliton of the K d v  (8) given by 

O =  (@(U) - A ) ( @ ( u )  - A ) u ,  = K , ( u )  - 2 A K , ( u ) + A 2 u ,  (16) 

where @(U) is the hereditary operator (7) .  This equation has the usual one-solitons 
as solutions. We can obtain another solution of this differential equation in the limit 
A , ,  A*-, A from the solution of the differential equation 

K ~ ( u )  - ( A I  + A ~ ) K I ( u ) + A , h ~ u ,  = O .  

One solution of this equation is the two-soliton with asymptotic speeds A ,  = 4 k : ,  
A 2  = 4k:  which we can take from the literature [ 113 as 

with 

y, = k , x + 4 k : t + S l  

yz = k 2 x + 4 k : t  + S 2  

where 6 ,  , S 2  are arbitrary constants. For real choices of S I ,  S 2  the limit k ,  , k,  + k yields 
zero. But this changes if we move the S into the complex plane. For example 

6 ,  = S + ifx - ( k ,  - k z ) x o  S 2 =  S 

gives for this limit the resonance soliton 

2 sinh’( y )  - k A  sinh(2y) 
(sinh( 2 y) - 2 k A)’ 

U ( X ,  t )  = 16k’ 

where 

y = kx + 4 k 3  I + S 

A = ( x - xg) + 12k2t .  

Certainly, the time evolution of this solution of the K d v  is far from decomposing 
asymptotically into travelling waves. In  the study of the Kdv ,  solutions like this one 
are sometimes neglected because it has a pole (of second order). Singular solutions 
like this have been studied for the K d v  in [ 1 2 ]  and the corresponding non-singular 
solutions for the sine-Gordon equation in [ 1 3 ] .  This example shows clearly that the 
question whether or not resonance solitons occur is not a principal one but rather a 
question depending on the special nature of the functions being admitted as solutions. 

3. The spectral problem connected to the auto-Backlund relation 

We first give some heuristic arguments which show that it is not at all surprising that 
auto-Backlund relations lead to isospectral problems for the flows under consideration. 
We consider the same situation as before and we recall two of the basic heuristic facts 
about auto-Backlund transformations B(u, U, A )  = 0. 

(i) For suitable choices of the parameter A the ‘implicit function’ E (  U, f, A )  = 0 
connects N solitons U with ( N  + 1 )  solitons U, where the ‘speed’ of the additional 
soliton is determined by A (see [ 9 ] ) .  
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(ii) The Backlund transformation is the same [14] for the whole hierarchy of the 
K , (  U), n = 0 , 1 , 2 , .  . . . This means 

B,[K,(u)I+B,[K,(U)I=O (21) 

for n = 0 , 1 , 2 , .  . . . Now, recalling that the K , ( u )  are generated by @(U), we find 

B , [ @ ( u ) K ( u ) ] +  B,[@(ii)K(U)l = O  

which leads, under the assumption of invertibility of the linear operators B, and &, 
to the well known [ 14,151 transformation formula for a( U): 

@(U) = - B ; ' B u @ ( u ) B ; l B u .  (22) 

For all known hereditary operators this formula can be checked directly. As a con- 
sequence 

6 = B,'B,[w] (23) 

must be an eigenvector of @(U) whenever w is one of @(U). Furthermore, the 
eigenvalues remain invariant under this transformation. Now, consider an ( N  + 1) 
soliton U and some N soliton U connected to U via B(u, ii, A N )  = 0. For U and U we 
have the following representations: 

N 

" = O  

in eigenvectors of @(U) and @(U), respectively. Apply (21) and (23) to (24a) in order 
to find 

N-1 
ti,= 1 (5,+B,'B,[oN]. 

n=O 

Comparison with ( 2 4 6 )  yields that B, must have annihilated the w N ,  i.e. 

&(U, G, A N ) [ W N I = O  ( 2 5 ~ )  
where U is determined by 

B(u, t i , A N ) = O .  (25b) 

This formula depends on the right choice of the parameter A N ,  It should be remarked 
that in (25) we can change the A N ,  w N  into A,, w, by interchanging the indices in the 
eigenvector decomposition (24). Our approach shows that given U, there is no suitable 
ti for all A, with B( U, ii, A N )  = 0 such that the kernel of B, is non-empty, but only for 
those A equal to some A,, n = 0 , .  . . , N. Thus we have arrived at an eigenvalue problem. 

Spectral problem 1. Given a solution U of (11,  find those A such that there is some 
non-zero vector field w and some ti with 

( 2 6 ~ )  B,(u,  U, A ) [ w ]  = 0 

and 

B(u, ti, A )  = 0. (26b) 
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Remark 4 
(i) This spectral problem is invariant under the flow ( 1 )  since variation of U by 

some suitable scalar multiple of w corresponds to zero variation of U .  
(ii) In addition our  heuristic approach shows that the eigenvectors of this spectral 

problem coincide with those of @(U). So, if possible, a linearisation of this spectral 
problem must be equivalent to a spectral problem given by a suitable polynomial of 
@(U). 

In general, it happens that if B represents the 'most simple' auto-Backlund relation 
and @(U) the 'most simple' recursion operator then the spectral problem ( 2 6 )  corre- 
sponds to the one given by @ ( U ) ,  whereas an  iteration of this ABT leads to a suitable 
polynomial of @( U ) .  Of course, we cannot give a general theorem concerning this fact 
without going into a classification of the complexity of the operators 0 and B,  (which 
would go beyond the scope of this paper). 

Some readers may not feel at ease with our structural arguments leading to the 
connection between the ABT and the recursion operator. Therefore, we go through the 
construction explicitly in the case of the Kdv and the Burgers equation. 

Example 4. For the Burgers equation (11) the ABT is given by ( 1 2 ) .  The variational 
derivative with respect to U yields 

B, = exp( -D- ' (  u - n) )D- '  - c. ( 2 7 ~ )  

The spectral problem ( 2 6 a )  gives 

O =  B , [ w ] = e x p ( - D - ' ( u - ~ ) ) D - ' w - c w .  ( 2 7 b )  

In order to obtain the spectral problem in explicit form we have to eliminate U .  From 
( 2 7 b )  we obtain 

exp( -D-'( u - i j ) )  = -CO/ D-'w 

which we insert in (12) to obtain 

C U +  C W / ( D - ' U ) - A  = 0. 

Multiplication with D-'W and finding the derivative with respect to x gives 

Aw = c [ ( u D - ' w ) ,  + U , ]  = c @ ( u ) w  

where @(U) is the recursion operator ( 1 0 ) .  Hence ( 2 7 6 )  is equivalent to w being an  
eigenvector of @(U). 

Example 5. For the Kdv the situation is slightly more complicated. A remark seems 
in order. For differential operators the spectrum very much depends on the boundary 
conditions which are required for the solutions. For the Kdv one usually considers 
solutions vanishing rapidly at x = *W. But for this solution manifold (9) is certainly 
not an ABT since not both U and U can vanish at *W. But this incompatability is easily 
repaired by using the fact that the integration D-' is arbitrary up  to a constant. 
Rewriting then gives the ABT 

( 2 8 ~ )  B ( U ,  U ,  A )  = u + u + ~ ( D - ~ ( u  - u ) ) ~ + A D - ~ ( u -  n) = O  
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which is now compatible with the boundary conditions. The variational derivative of 
(28a)  with respect to U yields 

(28b)  B, = I + ( D - ’ ( u  - U))D-’ SAD- ’  

and the spectral problem (26a)  reads as follows: 

o = + ( D - ’ ( u  - G ) ) D - ’ ~  + AD-’@. ( 2 8 ~ )  

The abbreviation D-’w = U gives 

D - ’ ( u  - U) = - ( u , / u  + A ) .  ( 2 8 d )  

Writing U + ii as 2 u  -(U - U )  and replacing all terms U - U in (28a)  by ( 2 8 d )  we obtain 

2~ + ( U , /  U + A ) y  +;( U,/ U + A ) 2  - A ( U , /  U + A )  = 0 

which is certainly a non-linear eigenvalue equation. By multiplication with U* we obtain 
7 ,  ~ u v ’ +  U,,V - ~ u , u ,  = ~ A ’ u - .  

If this problem can be linearised there must be operators A(u)  and *(U) such that 
A ( u ) u = c u *  and A ( u ) Y ( u ) u  is equal to the left-hand side of (28e) .  Comparison of 
suitable terms yields 

D-’uD(v,,+~uu+~D-’(~v,)) = A’D-’uDu. ( 2 8 f )  

Hence A ( v ) =  D - ’ u D  and Y ( u ) =  D 2 + 2 u + 2 D - ’ u D .  
Going back to w = U ,  we see that w is an  eigenvector of the spectral problem if 

and only if  w is an eigenvector of @( U), which was given in ( 7 ) .  From this computation 
we also see that the parameter A in the ABT corresponds to the square root of the 
corresponding eigenvalue for @( U ) .  

Observe that, in our heuristic approach, we used the fact that the A B T  connects 
multisolitons. This was done in order to show that the spectral problem 1 is equivalent 
to that given by a suitable polynomial of @ ( U ) .  Of course, the converse is also true. 

Definition 1. Assume that ( 2 1 )  holds. We say the spectral problem 1 is 
( i)  polynomially equivalent to @(U) if, for any A ,  the kernel of B,( U, U, A ) is always 

contained in an eigenspace of @(U), and 
(ii) equivalent to @(U) if, for any A, either of the kernels & ( U ,  ii, A )  or B,( U ,  U, A )  

must be empty and if in addition there is a one-to-one map A -+ q ( A )  such that for any 
U the pair ( A ,  w )  is a solution of the spectral problem 1 if and only if w is an eigenvector 
of @(U) with eigenvalue q ( A ) .  

Our examples show that for the Burgers equation the corresponding spectral problem 
given by the ABT ( 1 2 )  is equivalent to @ ( U )  (given by ( 1 0 ) ) .  The same holds for the 
Kdv provided the solution manifold under consideration is such that @ ( U )  has only 
positive eigenvalues (which is usually the case since the eigenvalues of @(U) are the 
squares of the eigenvalues of the Schrodinger operator). 

Theorem 2. 

condition (v )  implies that U must be a resonance multisoliton. 

with different A o ,  . . . , A N  is equivalent to U being a multisoliton. 

(i) Assume that the spectral problem 1 is polynomially equivalent to @ ( U ) ,  then 

(ii) Assume that the spectral problem 1 is equivalent to @ ( U ) .  Then condition ( v )  



Multisolitons: ZI 385 

Proof: Let P ( 5 )  be any polynomial in 6, then (211, together with K , ( u ) = @ ( u ) " u , ,  
implies 

(29) B,[ P(@(  u))u,]  + B,[ P ( @ (  U)) I&]  = 0. 

So if ii is a resonance multisoliton then there must be a polynomial P, such that 
Pl(@(ii))Ur = O .  If the spectral problem 1 is polynomially equivalent to @ then there 
must be a polynomial P 2 ( @ ( u ) )  annihilating the kernel of B,. This shows that 
B(u, U, A )  = 0 connects resonance multisolitons, because (29) then implies 
B,[P,(@(u))u,] =0,  hence P 2 ( @ ( u ) ) P l ( @ ( u ) ) u ,  = O  (which yields that U is a resonance 
multisoliton). Now, (i) follows from the fact that 0 is certainly a resonance multi- 
soliton. Hence all the U, appearing in condition (v )  must be resonance multisolitons. 
In order to prove (ii), assume that U is a multisoliton, i.e. U, =I;,"=, w, where w, are 
eigenvectors of @( U )  with corresponding eigenvalues cp( A ) .  Define U by B(  U, U, A N )  = 0. 
Then, since the kernel of B, is not empty, the kernel of B, must be empty and from 
B u [ w N ]  = 0 and the fact that 

P ( @ ) = ( @ ( u ) - c p ( A o ) ) .  . . ( @ ( u ) - c p ( A N - , ) ) = x  b,@' 

annihilates E:=-; w ,  we obtain, via (29), that P ( @ ( c ) ) &  = O .  Hence, U must be a 
multisoliton in whose spectral decomposition the A N  does not occur. Repetition of 
this argument shows that there must be a construction for U according to condition 
(v) (with different A ) .  Now assume that condition (v)  with different A holds. Then 
using definition 1 ( i i )  and (29) one easily shows that 

p ( @ ( ~ ) ) = ( @ ( u ) - ( ~ ( A o ) ) ( @ ( u ) - c p ( h ~ ) ) .  . . ( @ ( U ) - ~ ( A N ) )  

annihilates U. Since all the zeros of P ( 5 )  are different U must be a multisoliton. 

4. The more complicated situation 

For exactly solvable systems the situation is not always as simple as assumed in the 
introduction. The complications encountered, for example, in the CDGSK equation are 
as in the following. 

Situation 2. 
( i )  For an evolution equation 

U, = K ( u )  U = u ( x ,  t )  (1) 

there is a hereditary operator O I ( u )  which is a strong symmetry (recursion operator) 
for ( l ) ,  i.e. [7,  81 

@ . ' , ( u ) [ K ( u ) l =  K'(u)@1(u) --@1(u)K'(u)  (30) 

( i i )  Equation (1) is translation invariant (i.e. has U, as a symmetry generator) but 

(iii) There is an auto-Backlund relation for (1) which is not (in an obvious way) 

where @;(U)[ 3 and K ' ( u )  denote the variational derivatives. 

is not of the form U, = @( u ) ~ u , .  

equivalent to the spectral properties of @( U). 
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Example 6. The CDGSK 

U, = U,,,,, + 3Ou,,,u + 30u,,ux + 180u2u, 

has the hereditary [ 51 operator 

@(U) = O( U)]( U )  

as strong symmetry, where 

@(U)= D 3 + 3 ( u D + D u )  (32b) 

(32c)  
J ( u )  = 2 D 3 +  18(uD+ D u ) + 6 ( D 2 u D - ' +  D-'uD2)+6(u2D- '+ D-'u2) .  

Obviously (31)  cannot be of the form required in the introduction. Equation (31)  has 
the following ABT for (31)  (see [4]): 

(33) 

A tiresome computation shows that, in fact, the spectral problem given by (33)  is 

( U  - U), + { D-'(  U - ii)}3 + 3( U + U)D-'(  U - U) = A. 

equivalent to @ (for the N-soliton case see [ l ] ) .  

Alas, the essential point in most of the considerations which lead to the different 
characterisations of multisoliton solutions was that the flow under consideration was 
generated out of U, by application of @(U). So there seems to be little hope of 
transferring our results to situation 2. 

However, consider an  additional assumption as follows. 

Assumption 1 .  There is some hereditary operator 9 such that 0 = n,(T) and such that 
( 1 )  is of the form U, = I 1 2 ( 9 ) u , ,  where 111(9), n,(9) are polynomials in 9. 

Now we can actually transfer almost all the results from situation 1 to situation 2. 
Before we go into the details of this statement we would like to discuss whether 

or not this assumption is a reasonable one. At first, this is very unlikely since in the 
case of the CDGSK no operator like 9 has been found and  furthermore, some symmetry 
generators, which should exist as a consequence of assumption 1, are obviously missing 
in the hierarchy of the system [3,5].  On the other hand, up  to now with respect to 
hereditary operators we have been spoiled by the Kdv and the like, where the corre- 
sponding hereditary operators have always been nice polynomials in D, D-' and U. 
There is no reason why this should always be the case. For example, a hereditary 
symmetry 9 could be a polynomial in D, D- ' ,  U and some U, where U is determined 
by U via a very complicated implicit function. And even for those slightly more 
complicated 9, it could be the case that the third power of 9 is of the smooth form 
we are accustomed to. Also, the missing symmetries could be explained in the same 
way; maybe, every third symmetry is of the complicated implicit form mentioned above 
whereas the others are not. 

In fact, we believe that this is just what happens in case of the CDGSK, and there 
is very good reason to believe this. 

One can prove for completely integrable flows on finite-dimensional manifolds that 
assumption 1 holds whenever situation 2 occurs. Of course, the conscientious reader 
still must object that the finite case is not at all characteristic of the infinite-dimensional 
one. But this objection really does not matter at all since multisoliton manifolds are 
(if only one space variable occurs) finite dimensional. So, since the CDGSK is completely 



Multisolitons: II 387 

integrable, all the consequences obtainable from assumption 1 for the description of 
multisoliton manifolds are justified. 

Let us now return to the general problem of characterising multisolitons in our 
more complicated case. We consider situation 2 under the additional assumption 1. 

By K ,  we denote the linear hull of the K,( U )  = @( u)"u, ,  n = 0, 1,. . . . Since the 
vector field K ( u )  describing the flow (1) is not an element of K ,  we have to introduce 
an additional space of vector fields. Let K 2  be the linear hull of the K,(u) = Y(u)"u, ,  
n = 0,1,. . . . Now, K ,  c K 2  and K E K 2  (assumption 1). Furthermore K z  is Abelian 
since Y is hereditary [8]. 

Since the results of lemma 1 and theorem 1 are not really results about flows, but 
rather results about the space of vector fields generated by polynomials in a fixed 
operator acting on U,, it is a simple observation that they hold whenever ( K ,  @) is 
replaced by either ( K ,  , a) or ( K 2 ,  V). 

But this is not the real problem. The real problem is that for the definition of 
notions like multisoliton or resonance multisoliton we have to consider the case where 
( K ,  @) is replaced by ( K 2 ,  0) whereas for the computations only the operator CP is 
available because VI is unknown to us. Fortunately, our limited knowledge about Y 
is not that important. 

Remark 5. The following are equivalent. 
( i )  There is some L1 E K ,  with L , (  U )  = 0. 
(ii) There is some Lz  E K 2  with L2( U )  = 0. 

ProoJ 
(i)+(ii) is trivial because of K ,  c K z .  
(ii)+(i). Let L2 be of the form &(U) = P l ( q ) u x  where p1 is a polynomial. A 

simple computation with polynomials shows that there is a polynomial P 2 ( 9 )  such 
that P l ( 9 ) P 2 ( 9 )  can be written as a polynomial P ( I I , ( q ) )  in II,(9) = @ (assumption 
1). Hence L , ( u )  = P ( @ ) u ,  = 0 and L1 E K , .  

It is obvious that without further knowledge about the relation between Y and @ we 
cannot say anything about whether or not non-degeneracy conditions can be transferred 
from K ,  to K 2  or vice versa. A consequence of remark 5 is that any of the equivalent 
conditions (i), (iii) or (vi) completely characterises resonance multisolitons. But 
even when conditions (ii) or (iv) hold we cannot be sure that we have to deal with a 
genuine multisoliton because we d o  not know the exact relation between @ and 9. 
The same holds for condition (v) since this only yields information about the spectral 
properties of @. 

Of course, no  harm is done by this uncertainty for concrete computations since 
the multisolitons are special cases of resonance multisolitons. So whenever we can 
compute the resonance multisolitons then the multisolitons can be picked out by special 
choices of the integration constants. 

A comparison of the (more heuristic) results of this section with the explicit results 
[ l ]  about the CDGSK shows complete agreement. 

(i) The spectral problem given by the ABT (33)  leads to eigenvectors of @(U). 
( i i )  The resonance multisolitons can be characterised by spectral properties of @( U). 
(iii) In  general the ABT (or @(U)) leads to resonance multisolitons instead of 

The last statement needs some further explanation. For simplicity we give the 
genuine multisolitons. 

necessary arguments in the case of the general one-soliton found in [ 11. 
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Recall that the most general one-soliton found in [ l ]  was the general solution of 
U, = U ,  o eigenvector of @, i.e. a solution of (@( U )  - A)u, = 0. In addition we found 
that in this case the flow K ( U )  under consideration did not reduce to a scalar multiple 
of U,. This excluded our solution U from being a genuine one-soliton. Still it could 
be a general multisoliton if the factorisation of (@ - A )  in linear factors of 9 has only 
simple roots. But if it were a genuine multisoliton then different choices of integration 
parameters should lead to different solitons corresponding to these different roots and 
this was not the case. 
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